Evaluation of the Performance of Smoothing Functions in Generalized Additive Models for Spatial Variation in Disease
نویسندگان
چکیده
Generalized additive models (GAMs) with bivariate smoothing functions have been applied to estimate spatial variation in risk for many types of cancers. Only a handful of studies have evaluated the performance of smoothing functions applied in GAMs with regard to different geographical areas of elevated risk and different risk levels. This study evaluates the ability of different smoothing functions to detect overall spatial variation of risk and elevated risk in diverse geographical areas at various risk levels using a simulation study. We created five scenarios with different true risk area shapes (circle, triangle, linear) in a square study region. We applied four different smoothing functions in the GAMs, including two types of thin plate regression splines (TPRS) and two versions of locally weighted scatterplot smoothing (loess). We tested the null hypothesis of constant risk and detected areas of elevated risk using analysis of deviance with permutation methods and assessed the performance of the smoothing methods based on the spatial detection rate, sensitivity, accuracy, precision, power, and false-positive rate. The results showed that all methods had a higher sensitivity and a consistently moderate-to-high accuracy rate when the true disease risk was higher. The models generally performed better in detecting elevated risk areas than detecting overall spatial variation. One of the loess methods had the highest precision in detecting overall spatial variation across scenarios and outperformed the other methods in detecting a linear elevated risk area. The TPRS methods outperformed loess in detecting elevated risk in two circular areas.
منابع مشابه
Non-linear Analysis of Stability in the Islamic Banking Industry
Stability analysis is one of the most important fields of study in the Islamic banking and finance industry. For measuring stability in Islamic banking, we introduced, for the first time, an Islamic banking stability index (IBS) during 2013 to 2016 which use all CAMEL factors and so seems to be more comprehensive than Z-score stability index which dominantly used in the existing literatures. To...
متن کاملUsing Context-based Statistical Models to Promote the Quality of Voice Conversion Systems
This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملInference in generalized additive mixed models by using smoothing splines
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows ̄exible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate no...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کامل